1 (i) Differentiate $\sqrt{1+3 x^{2}}$.
(ii) Hence show that the derivative of $x \sqrt{1+3 x^{2}}$ is $\frac{1+6 x^{2}}{\sqrt{1+3 x^{2}}}$.

2 Given that $y^{3}=x y-x^{2}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y-2 x}{3 y^{2}-x}$.
Hence show that the curve $y^{3}=x y-x^{2}$ has a stationary point when $x=\frac{1}{8}$.

3 Fig. 8 shows the curve $y=x^{2}-\frac{1}{8} \ln x$. P is the point on this curve with x-coordinate 1 , and R is the point $\left(0,-\frac{7}{8}\right)$.

Fig. 8
(i) Find the gradient of PR.
(ii) Find $\frac{d y}{d x}$. Hence show that $P R$ is a tangent to the curve.
(iii) Find the exact coordinates of the turning point Q .
(iv) Differentiate $x \ln x-x$.

Hence, or otherwise, show that the area of the region enclosed by the curve $y=x^{2}-\frac{1}{8} \ln x$, the x-axis and the lines $x=1$ and $x=2$ is $\frac{59}{24}-\frac{1}{4} \ln 2$.

4 The equation of a curve is given by $\mathrm{e}^{2 y}=1+\sin x$.
(i) By differentiating implicitly, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(ii) Find an expression for y in terms of x, and differentiate it to verify the result in part (i).
$5 \quad$ Fig. 6 shows the curve $\mathrm{e}^{2 y}=x^{2}+y$.

Fig. 6
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x}{2 \mathrm{e}^{2 y}-1}$.
(ii) Hence find to 3 significant figures the coordinates of the point P , shown in Fig. 6, where the curve has infinite gradient.

