1 (i) Differentiate
$$\sqrt{1+3x^2}$$
. [3]

(ii) Hence show that the derivative of
$$x\sqrt{1+3x^2}$$
 is $\frac{1+6x^2}{\sqrt{1+3x^2}}$. [4]

2 Given that
$$y^3 = xy - x^2$$
, show that $\frac{dy}{dx} = \frac{y - 2x}{3y^2 - x}$.

Hence show that the curve $y^3 = xy - x^2$ has a stationary point when $x = \frac{1}{8}$. [7]

3 Fig. 8 shows the curve $y = x^2 - \frac{1}{8} \ln x$. P is the point on this curve with x-coordinate 1, and R is the point $(0, -\frac{7}{8})$.

Fig. 8

(i) Find the gradient of PR.	[3]
(ii) Find $\frac{dy}{dx}$. Hence show that PR is a tangent to the curve.	[3]

- (ii) Find $\frac{dy}{dx}$. Hence show that PR is a tangent to the curve. (iii) Find the exact coordinates of the turning point Q.
- (iv) Differentiate $x \ln x x$.

Hence, or otherwise, show that the area of the region enclosed by the curve $y = x^2 - \frac{1}{8} \ln x$, the *x*-axis and the lines x = 1 and x = 2 is $\frac{59}{24} - \frac{1}{4} \ln 2$. [7]

[5]

- 4 The equation of a curve is given by $e^{2y} = 1 + \sin x$.
 - (i) By differentiating implicitly, find $\frac{dy}{dx}$ in terms of x and y. [3]
 - (ii) Find an expression for y in terms of x, and differentiate it to verify the result in part (i). [4]
- 5 Fig. 6 shows the curve $e^{2y} = x^2 + y$.

Fig. 6

(i) Show that
$$\frac{dy}{dx} = \frac{2x}{2e^{2y} - 1}$$
. [4]

(ii) Hence find to 3 significant figures the coordinates of the point P, shown in Fig. 6, where the curve has infinite gradient. [4]